skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barnes, Leighton Pate"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider information-theoretic bounds on the expected generalization error for statistical learning problems in a network setting. In this setting, there are K nodes, each with its own independent dataset, and the models from the K nodes have to be aggregated into a final centralized model. We consider both simple averaging of the models as well as more complicated multi-round algorithms. We give upper bounds on the expected generalization error for a variety of problems, such as those with Bregman divergence or Lipschitz continuous losses, that demonstrate an improved dependence of 1/K on the number of nodes. These “per node” bounds are in terms of the mutual information between the training dataset and the trained weights at each node and are therefore useful in describing the generalization properties inherent to having communication or privacy constraints at each node. 
    more » « less